No Image

Электрическая схема генератора постоянного тока

СОДЕРЖАНИЕ
0 просмотров
21 января 2020

Свойства генератора постоянного тока определяются в основном способом включения обмотки возбуждения. Существуют генераторы независимого, параллельного, последовательного и смешанного возбуждения:

с независимым возбуждением : обмотка возбуждения получает питание от постороннего источника постоянного тока (аккумуляторной батареи, небольшого вспомогательного генератора, называемого возбудителем, или выпрямителя),

с параллельным возбуждением : обмотка возбуждения подключена параллельно обмотке якоря и нагрузке,

с последовательным возбуждением : обмотка возбуждения включена последовательно с обмоткой якоря и нагрузкой,

со смешанным возбуждением : имеются две обмотки возбуждения — параллельная и последовательная, первая подключена параллельно обмотке якоря, а вторая — последовательно с нею и нагрузкой.

Генераторы с параллельным, последовательным и смешанным возбуждением относятся к машинам с самовозбуждением, так как питание их обмоток возбуждения осуществляется от самого генератора.

Возбуждение генераторов постоянного тока: а – независимое, б – параллельное, в – последовательное, г – смешанное.

Все перечисленные генераторы имеют одинаковое устройство и отличаются лишь выполнением обмоток возбуждения. Обмотки независимого и параллельного возбуждения изготовляют из провода малого сечения, они имеют большое число витков, обмотку последовательного возбуждения — из провода большого сечения, она имеет малое число витков.

О свойствах генераторов постоянного тока судят по их характеристикам: холостого хода, внешней и регулировочной. Ниже будут рассмотрены эти характеристики для генераторов различного типа.

Генератор с независимым возбуждением

Характерной особенностью генератора с независимым возбуждением (рис. 1) является то, что его ток возбуждения Iв не зависит от тока якоря Iя, а определяется только напряжением Uв подаваемым на обмотку возбуждения, и сопротивлением Rв цепи возбуждения.

Рис. 1. Принципиальная схема генератора с независимым возбуждением

Обычно ток возбуждения невелик и составляет 2—5 % номинального тока якоря. Для регулирования напряжения генератора в цепь обмотки возбуждения часто включают регулировочный реостат Rрв. На тепловозах ток Iв регулируют путем изменения напряжения Uв.

Характеристика холостого хода генератора (рис. 2, а) — зависимость напряжения Uo при холостом ходе от тока возбуждения Iв при отсутствии нагрузки Rн, т. е. при Iн = Iя = 0 и при постоянной частоте вращения п. При холостом ходе, когда цепь нагрузки разомкнута, напряжение генератора Uo равно его э. д. с. Eo = cЕФn.

Так как при снятии характеристики холостого хода частота вращения n поддерживается неизменной, то напряжение Uo зависит только от магнитного потока Ф. Поэтому характеристика холостого хода будет подобна зависимости потока Ф от тока возбуждения Iя (магнитной характеристике магнитной цепи генератора).

Характеристику холостого хода легко снять экспериментально, постепенно увеличивая ток возбуждения от нуля до значения, при котором U0 = 1,25Uном, а затем уменьшая ток возбуждения до нуля. При этом получаются восходящая 1 и нисходящая 2 ветви характеристики. Расхождение этих ветвей объясняется наличием гистерезиса в магнитопроводе машины. При Iв = 0 в обмотке якоря потоком остаточного магнетизма индуцируется остаточная э. д. с. Еост, которая обычно составляет 2—4 % номинального напряжения Uном.

При малых токах возбуждения магнитный поток машины невелик, поэтому в этой области поток и напряжение Uo изменяются прямо пропорционально току возбуждения и начальная часть этой характеристики представляет собой прямую. При увеличении тока возбуждения магнитная цепь генератора насыщается и нарастание напряжения Uo замедляется. Чем больше становится ток возбуждения, тем сильнее сказывается насыщение магнитной цепи машины и тем медленнее возрастает напряжение U0. При очень больших токах возбуждения напряжение Uo практически перестает возрастать.

Характеристика холостого хода позволяет судить о значении возможного напряжения и о магнитных свойствах машины. Номинальное напряжение (указанное в паспорте) для машин общего применения соответствует насыщенной части характеристики («колену» этой кривой). В тепловозных генераторах, требующих регулирования напряжения в широких пределах, используют как криволинейную, так и прямолинейную ненасыщенную часть характеристики.

Э. д. с. машины изменяется пропорционально частоте вращения n , поэтому при n2

Внешняя характеристика генератора (рис. 2, б) представляет собой зависимость напряжения U от тока нагрузки Iп = Iя при постоянных частоте вращения n и токе возбуждения Iв. Напряжение генератора U всегда меньше его э. д. с. Е на значение падения напряжения во всех обмотках, включенных последовательно в цепь якоря.

С увеличением нагрузки генератора (тока обмотки якоря IЯ — IН) напряжение генератора уменьшается по двум причинам:

1) из-за увеличения падения напряжения в цепи обмотки якоря,

2) из-за уменьшения э. д. с. в результате размагничивающего действия потока якоря. Магнитный поток якоря несколько ослабляет главный магнитный поток Ф генератора, что приводит к некоторому уменьшению его э. д. с. Е при нагрузке по сравнению с э. д. с. Ео при холостом ходе.

Изменение напряжения при переходе от режима холостого хода к номинальной нагрузке в рассматриваемом генераторе составляет 3 – 8℅ от номинального.

Если замкнуть внешнюю цепь на очень малое сопротивление, т. е. произвести короткое замыкание генератора, то напряжение его падает до нуля. Ток в обмотке якоря Iк при коротком замыкании достигнет недопустимого значения, при котором может перегореть обмотка якоря. В машинах малой мощности ток короткого замыкания может в 10—15 раз превысить номинальный ток, в машинах большой мощности это соотношение может достигать 20—25.

Рис. 2. Характеристики генератора с независимым возбуждением: а — холостого хода, б — внешняя, в — регулировочная

Регулировочная характеристика генератора (рис. 2, в) представляет собой зависимость тока возбуждения Iв от тока нагрузки Iн при неизменном напряжении U и частоте вращения п. Она показывает, как надо регулировать ток возбуждения, чтобы поддерживать постоянным напряжение генератора при изменении нагрузки. Очевидно, что в этом случае по мере роста нагрузки нужно увеличивать ток возбуждения.

Достоинствами генератора с независимым возбуждением являются возможность регулирования напряжения в широких пределах от 0 до Umax путем изменения тока возбуждения и малое изменение напряжения генератора под нагрузкой. Однако он требует наличия внешнего источника постоянного тока для питания обмотки возбуждения.

Генератор с параллельным возбуждением.

В этом генераторе (рис. 3, а) ток обмотки якоря Iя разветвляется во внешнюю цепь нагрузки RH (ток Iн) и в обмотку возбуждения (ток Iв), ток Iв для машин средней и большой мощности составляет 2—5 % номинального значения тока в обмотке якоря. В машине используется принцип самовозбуждения, при котором обмотка возбуждения получает питание непосредственно от обмотки якоря генератора. Однако самовозбуждение генератора возможно только при выполнении ряда условий.

1. Для начала процесса самовозбуждения генератора необходимо наличие в магнитной цепи машины потока остаточного магнетизма, который индуцирует в обмотке якоря э. д. с. Еост. Эта э. д. с. обеспечивает протекание по цепи «обмотка якоря — обмотка возбуждения» некоторого начального тока.

2. Магнитный поток, создаваемый обмоткой возбуждения, должен быть направлен согласно с магнитным потоком остаточного магнетизма. В этом случае в процессе самовозбуждения будет нарастать ток возбуждения Iв и, следовательно, магнитный поток Ф машины э. д. с. Е. Это будет продолжаться до тех пор, пока из-за насыщения магнитной цепи машины не прекратится дальнейшее увеличение Ф, а следовательно, Е и Iв. Совпадение по направлению указанных потоков обеспечивается путем правильного присоединения обмотки возбуждения к обмотке якоря. При неправильном ее подключении происходит размагничивание машины (исчезает остаточный магнетизм) и э. д. с. Е уменьшается до нуля.

3. Сопротивление цепи возбуждения RB должно быть меньше некоторого предельного значения, называемого критическим сопротивлением. Поэтому для быстрейшего возбуждения генератора рекомендуется при включении генератора в работу полностью выводить регулировочный реостат Rрв, включенный последовательно с обмоткой возбуждения (см. рис. 3, а). Это условие ограничивает также возможный диапазон регулирования тока возбуждения, а следовательно, и напряжения генератора с параллельным возбуждением. Обычно уменьшать напряжение генератора путем увеличения сопротивления цепи обмотки возбуждения можно лишь до (0,64-0,7) Uном.

Рис. 3. Принципиальная схема генератора с параллельным возбуждением (а) и внешние характеристики генераторов с независимым и параллельным возбуждением (б)

Читайте также:  Спойлер ваз 2114 артикул

Следует отметить, что для самовозбуждения генератора необходимо, чтобы процесс увеличения его э. д. с. E и тока возбуждения Iв происходил при работе машины в режиме холостого хода. В противном случае из-за малого значения Eoст и большого внутреннего падения напряжения в цепи обмотки якоря напряжение, подаваемое на обмотку возбуждения, может уменьшиться почти до нуля и ток возбуждения не сможет увеличиться. Поэтому нагрузку к генератору следует подключать только после установления на его зажимах напряжения, близкого к номинальному.

При изменении направления вращения якоря изменяется полярность щеток, а следовательно, и направление тока в обмотке возбуждения, в этом случае генератор размагничивается.

Во избежание этого при изменении направления вращения необходимо переключить провода, присоединяющие обмотку возбуждения к обмотке якоря.

Внешняя характеристика генератора (кривая 1 на рис. 3, б) представляет собой зависимость напряжения U от тока нагрузки Iн при неизменных значениях частоты вращения n и сопротивления цепи возбуждения RB. Она располагается ниже внешней характеристики генератора с независимым возбуждением (кривая 2).

Объясняется это тем, что кроме тех же двух причин, вызывающих уменьшение напряжения с ростом нагрузки в генераторе с независимым возбуждением (падение напряжения в цепи якоря и размагничивающее действие реакции якоря), в рассматриваемом генераторе существует еще третья причина — уменьшение тока возбуждения.

Так как ток возбуждения IB = U/Rв, т. е. зависит от напряжения U машины, то с уменьшением напряжения по указанным двум причинам уменьшается магнитный поток Ф и э. д. с. генератора Е, что приводит к дополнительному уменьшению напряжения. Максимальный ток Iкр, соответствующий точке а, называется критическим.

При коротком замыкании обмотки якоря ток Iк генератора с параллельным возбуждением мал (точка б), так как в этом режиме напряжение и ток возбуждения равны нулю. Поэтому ток короткого замыкания создается только э. д. с. от остаточного магнетизма и составляет (0,4…0,8) Iном.. Внешняя характеристика точкой а делится на две части: верхнюю — рабочую и нижнюю — нерабочую.

Обычно используется не вся рабочая часть, а только некоторый ее отрезок. Работа на участке аб внешней характеристики неустойчива, в этом случае машина переходит в режим, соответствующий точке б, т. е. в режим короткого замыкания.

Характеристику холостого хода генератора с параллельным возбуждением снимают при независимом возбуждении (когда ток в якоре Iя = 0), поэтому она ничем не отличается от соответствующей характеристики для генератора с независимым возбуждением (см. рис. 2, а). Регулировочная характеристика генератора с параллельным возбуждением имеет такой же вид, как и характеристика для генератора с независимым возбуждением (см. рис. 2, в).

Генераторы с параллельным возбуждением применяют для питания электрических потребителей в пассажирских вагонах, автомобилях и самолетах, в качестве генераторов управления на электровозах, тепловозах и моторных вагонах и для заряда аккумуляторных батарей.

Генератор с последовательным возбуждением

У этого генератора (рис. 4, а) ток возбуждения Iв равен току нагрузки Iн = Iя и напряжение сильно изменяется при изменении тока нагрузки. При холостом ходе в генераторе индуцируется небольшая э. д. с. Еост, создаваемая потоком остаточного магнетизма (рис. 4, б).

С увеличением тока нагрузки Iи = Iв = Iя возрастают магнитный поток, э. д. с. и напряжение генератора, это возрастание, как и у других самовозбуждающихся машин (генератора с параллельным возбуждением), продолжается до известного предела, обусловленного магнитным насыщением машины.

При увеличении тока нагрузки свыше Iкр напряжение генератора начинает уменьшаться, так как магнитный поток возбуждения из-за насыщения почти перестает увеличиваться, а размагничивающее действие реакции якоря и падение напряжения в цепи обмотки якоря IяΣRя продолжают возрастать. Обычно ток Iкр значительно больше номинального тока. Генератор может работать устойчиво только на части аб внешней характеристики, т. е. при токах нагрузки, больших номинального.

Так как в генераторах с последовательным возбуждением напряжение сильно изменяется при изменении нагрузки, а при холостом ходе близко в нулю, они непригодны для питания большинства электрических потребителей. Используют их лишь при электрическом (реостатном) торможении двигателей с последовательным возбуждением, которые при этом переводятся в генераторный режим.

Рис. 4. Принципиальная схема генератора с последовательным возбуждением (а) и его внешняя характеристика (б)

Генератор со смешанным возбуждением.

В этом генераторе (рис. 5, а) чаще всего параллельная обмотка возбуждения является основной, а последовательная — вспомогательной. Обе обмотки находятся на одних полюсах и соединены так, чтобы создаваемые ими магнитные потоки складывались (при согласном включении) или вычитались (при встречном включении).

Генератор со смешанным возбуждением при согласном включении его обмоток возбуждения позволяет получить приблизительно постоянное напряжение при изменении нагрузки. Внешняя характеристика генератора (рис. 5, б) может быть в первом приближении представлена в виде суммы характеристик, создаваемых каждой обмоткой возбуждения.

Рис. 5. Принципиальная схема генератора со смешанным возбуждением (а) и его внешние характеристики (б)

При включении только одной параллельной обмотки, по которой проходит ток возбуждения Iв1, напряжение генератора U постепенно уменьшается с ростом тока нагрузки Iн (кривая 1). При включении одной последовательной обмотки, по которой проходит ток возбуждения Iв2 = Iн напряжение U возрастает с увеличением тока Iн (кривая 2).

Если подобрать число витков последовательной обмотки так, чтобы при номинальной нагрузке создаваемое ею напряжение ΔUПОСЛ компенсировало суммарное падение напряжения ΔU при работе машины с одной только параллельной обмоткой, то можно добиться, чтобы напряжение U при изменении тока нагрузки от нуля до номинального значения оставалось почти неизменным (кривая 3). Практически оно изменяется в пределах 2—3 %.

Увеличивая число витков последовательной обмотки, можно получить характеристику, при которой напряжение UHOM будет больше напряжения Uо при холостом ходе (кривая 4), такая характеристика обеспечивает компенсацию падения напряжения не только во внутреннем сопротивлении цепи якоря генератора, но и в линии, соединяющей его с нагрузкой. Если последовательную обмотку включить так, чтобы создаваемый ею магнитный поток был направлен против потока параллельной обмотки (встречное включение), то внешняя характеристика генератора при большом числе витков последовательной обмотки будет круто падающей (кривая 5).

Встречное включение последовательной и параллельной обмоток возбуждения применяют в сварочных генераторах, работающих в условиях частых коротких замыканий. В таких генераторах при коротком замыкании последовательная обмотка почти полностью размагничивает машину и уменьшает ток к. з. до значения, безопасного для генератора.

Генераторы со встречно включенными обмотками возбуждения используют на некоторых тепловозах в качестве возбудителей тяговых генераторов, они обеспечивают постоянство мощности, отдаваемой генератором.

Такие возбудители применяют также на электровозах постоянного тока. Они питают обмотки возбуждения тяговых двигателей, которые при рекуперативном торможении работают в генераторном режиме, и обеспечивают получение круто падающих внешних характеристик.

Генератор смешанного возбуждения является типичным примером регулирования по возмущающему воздействию.

Генераторы постоянного тока часто включаются параллельно для работы на общую сеть. Необходимым условием параллельной работы генераторов с распределением нагрузки пропорционально номинальной мощности является идентичность их внешних характеристик. В случае применения генераторов смешанного возбуждения их последовательные обмотки для выравнивании токов приходится соединять в общий блок посредством уравнительного провода.

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Читайте также:  Петли для открывания дверей вверх

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinw t; e2 = -Blvsinw t; , где B магнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, t время, w t – угол, под которым рамка пересекает магнитный поток.

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinw t, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Рис. 4. Двигатель постоянного тока

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5). Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6). Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Читайте также:  Kia cerato руководство по эксплуатации

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Генератор постоянного тока – это электрическая машина, производящая напряжение постоянной величины.

За этим вполне банальным определением кроется очень сложное устройство, являющееся практически совершенством технической мысли. Ведь с момента изобретения в конце XIX века устройство генератора постоянного тока не претерпело существенных изменений.

Никакая энергия не возникает просто так, ниоткуда. Она — всегда порождение другой силы. Это касается и электрического тока. Чтобы он возник, нужно магнитное поле, позволяющее использовать эффект электромагнитной индукции — возбуждение ЭДС во вращающемся проводнике.

Принцип работы генератора постоянного тока

Если к концам петли проводника, внутри которой вращается постоянный магнит, подключить нагрузку, то в ней потечет переменный ток. Произойдет это потому, что полюса магнита меняются местами. На этом эффекте основан принцип работы генераторов переменного тока, являющихся братьями-близнецами машин постоянного напряжения.

Вся хитрость, благодаря которой получаемый ток не меняет направления, заключается в том, чтобы успевать коммутировать точки подключения нагрузки с той же скоростью, с какой вращается магнит. Осуществить эту задачу может только коллектор – особое устройство, состоящее из нескольких токопроводящих секторов, разделенных диэлектрическими пластинами. Оно закрепляется на якоре электрической машины и вращается синхронно с ним.

Съем электрической энергии с якоря осуществляется щетками – кусочками графита, имеющего высокую электропроводность и низкий коэффициент трения скольжения. В тот момент, когда токопроводящие сектора коллектора меняются местами, индуцируемая ЭДС становится нулевой, но изменить знак она не успевает, поскольку щетка передана токосъемному сектору, подключенному к другому концу проводника.

Как находить возможные неисправности генераторов и чинить их — подскажет подробная инструкция.

В результате, на выходе устройства получается пульсирующее напряжение одной величины. Чтобы сгладить пульсацию напряжения используется несколько якорных обмоток. Чем их больше, тем меньше броски напряжения на выходе генератора. Количество токосъемных секторов на коллекторе всегда в два раза больше, чем обмоток якоря.

Съем генерируемого напряжения с обмотки якоря, а не статора, является коренным отличием машины постоянного тока от переменного. Это же предопределило и их существенный недостаток: потери на трение между щетками и коллектором, искрение и нагрев.

Выясняем, как устроен агрегат

Как любая электрическая машина, генератор постоянного тока состоит из якоря и статора.

Якорь собирается из стальных пластин с углублениями, в которые укладываются обмотки. Их концы подсоединяются к коллектору, состоящему из медных пластин, разделенных диэлектриком. Коллектор, якорь с обмотками и вал электрической машины после сборки становятся единым целым.

Статор генератора является одновременно и его корпусом, на внутренней поверхности которого закрепляется несколько пар постоянных или электрических магнитов. Обычно используются электрические, сердечники которых могут быть отлиты вместе с корпусом (для машин малой мощности) или набраны из металлических пластин.

Также на корпусе предусматривается место для крепления токосъемных щеток.
В зависимости от количества полюсов магнитов на статоре меняется и количество графитовых элементов. Сколько пар полюсов, столько и щеток.

Типы подключения электрических магнитов статора

Генераторы постоянного тока различаются по типу подключения электрических магнитов статора. Они могут быть:

  • с независимым возбуждением;
  • параллельным;
  • последовательным.

При независимом возбуждении электрические магниты статора подключаются к автономному источнику постоянного тока. Обычно это делается через реостат. Достоинством такой схемы является возможность регулировки генерируемой электрической мощности в широких пределах. Недостатком – необходимость иметь дополнительный источник питания.

Остальные два способа являются частными случаями самовозбуждения генератора, которое возможно при небольшом остаточном магнетизме статора. При параллельной работе генератора постоянного тока электромагниты статора питаются частью генерируемого напряжения. Это самая распространенная схема.

С принципами работы симисторов познакомит эта статья. Как на таких полупроводниках собрать регулятор мощности, можно узнать тут.

При последовательном возбуждении цепь электромагнитов включается последовательно с нагрузочной цепью якоря. Величина тока, протекающего по электромагнитам, существенно зависит от нагрузки генератора. Поэтому такая схема используется только для подключения тяговых двигателей постоянного тока, которые при торможении переходят в режим генерации.

Применяется и смешанная схема подключения обмотки возбуждения – параллельно-последовательная. Для этого на каждом полюсе электромагнита должно быть две изолированные обмотки (включаемая последовательно обычно состоит всего из двух–трех витков). Такие электрические машины применяются в том случае, если требуется ограничить ток короткого замыкания в нагрузке. Например, в мобильных сварочных агрегатах.
Наличие коллекторно-щеточного узла существенно усложняет конструкцию электрической машины. Кроме того, передача генерируемой энергии через него осуществляется с большими потерями и физическими нагрузками. Поэтому, там где это возможно, машины постоянного тока заменяют асинхронными генераторами с выпрямительным мостом. Таковы, например, все автомобильные источники электроэнергии.

Устройство и принцип работы генератора постоянного тока на видео

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
Adblock detector